| Home | Privacy | Contact |

Pilot's Handbook of Aeronautical Knowledge
Aircraft Performance
Performance Charts

| First | Previous | Next | Last |

Pilot's Handbook of Aeronautical Knowledge

Preface

Acknowledgements

Table of Contents

Chapter 1, Introduction To Flying
Chapter 2, Aircraft Structure
Chapter 3, Principles of Flight
Chapter 4, Aerodynamics of Flight
Chapter 5, Flight Controls
Chapter 6, Aircraft Systems
Chapter 7, Flight Instruments
Chapter 8, Flight Manuals and Other Documents
Chapter 9, Weight and Balance
Chapter 10, Aircraft Performance
Chapter 11, Weather Theory
Chapter 12, Aviation Weather Services
Chapter 13, Airport Operation
Chapter 14, Airspace
Chapter 15, Navigation
Chapter 16, Aeromedical Factors
Chapter 17, Aeronautical Decision Making

Appendix

Glossary

Index

Conditions notes chart.
Figure 10-19. Conditions notes chart.

Performance Charts

Performance charts allow a pilot to predict the takeoff, climb,
cruise, and landing performance of an aircraft. These charts,
provided by the manufacturer, are included in the AFM/POH.
Information the manufacturer provides on these charts has
been gathered from test flights conducted in a new aircraft,
under normal operating conditions while using average
piloting skills, and with the aircraft and engine in good
working order. Engineers record the flight data and create
performance charts based on the behavior of the aircraft
during the test flights By using these performance charts,
a pilot can determine the runway length needed to take off
and land, the amount of fuel to be used during flight, and the
time required to arrive at the destination. It is important to
remember that the data from the charts will not be accurate
if the aircraft is not in good working order or when operating
under adverse conditions. Always consider the necessity to
compensate for the performance numbers if the aircraft is not
in good working order or piloting skills are below average.

Each aircraft performs differently and, therefore, has different
performance numbers. Compute the performance of the
aircraft prior to every flight, as every flight is different. (See
appendix for examples of performance charts for a Cessna
Model 172R and Challenger 605.)

Every chart is based on certain conditions and contains
notes on how to adapt the information for flight conditions.
It is important to read every chart and understand how to
use it. Read the instructions provided by the manufacturer.
For an explanation on how to use the charts, refer to the
example provided by the manufacturer for that specific chart.
[Figure 10-19]

The information manufacturers furnish is not standardized.
Information may be contained in a table format, and other
information may be contained in a graph format. Sometimes
combined graphs incorporate two or more graphs into one chart
to compensate for multiple conditions of flight Combined
graphs allow the pilot to predict aircraft performance for
variations in density altitude, weight, and winds all on one
chart. Because of the vast amount of information that can be
extracted from this type of chart, it is important to be very
accurate in reading the chart. A small error in the beginning
can lead to a large error at the end.

The remainder of this section covers performance information
for aircraft in general and discusses what information the
charts contain and how to extract information from the charts
by direct reading and interpolation methods. Every chart
contains a wealth of information that should be used when
flight planning. Examples of the table, graph, and combined
graph formats for all aspects of flight will be discussed.

Interpolation
Not all of the information on the charts is easily extracted.
Some charts require interpolation to find the information for
specific flight conditions. Interpolating information means
that by taking the known information, a pilot can compute
intermediate information. However, pilots sometimes round
off values from charts to a more conservative figure
Using values that reflect slightly more adverse conditions
provides a reasonable estimate of performance information
and gives a slight margin of safety. The following illustration
is an example of interpolating information from a takeoff
distance chart. [Figure 10-20]

 

10-18