| Home | Privacy | Contact |

Instrument Flying Handbook
Flight Instruments
Primary Right Display (PFD)

| First | Previous | Next | Last |

Instrument Flying


Table of Contents

Chapter 1. Human Factors
Chapter 2. Aerodynamic Factors
Chapter 3. Flight Instruments
Chapter 4. Section I
Airplane Attitude Instrument
Using Analog Instrumentation
Chapter 4. Section II
Airplane Attitude Instrument
Using an Electronic Flight

Chapter 5. Section I
Airplane Basic
Flight Maneuvers
Using Analog Instrumentation
Chapter 5. Section II
Airplane Basic
Flight Maneuvers
Using an Electronic Flight

Chapter 6. Helicopter
Attitude Instrument Flying

Chapter 7. Navigation Systems
Chapter 8. The National
Airspace System

Chapter 9. The Air Traffic
Control System

Chapter 10. IFR Flight
Chapter 11. Emergency

An FMS uses an electronic database of worldwide
navigational data including navigation aids, airways and
intersections, Standard Instrument Departures (SIDs),
Standard Terminal Arrival Routes (STARs), and Instrument
Approach Procedures (IAPs) together with pilot input through
a CDU to create a flight plan. The FMS provides outputs to
several aircraft systems including desired track, bearing and
distance to the active waypoint, lateral course deviation and
related data to the flight guidance system for the HSI displays,
and roll steering command for the autopilot/flight director
system. This allows outputs from the FMS to command
the airplane where to go and when and how to turn. To
support adaptation to numerous aircraft types, an FMS is
usually capable of receiving and outputting both analog and
digital data and discrete information. Currently, electronic
navigation databases are updated every 28 days.

The introduction of the Global Positioning System (GPS) has
provided extremely precise position at low cost, making GPS
the dominant FMS navigation sensor today. Currently, typical
FMS installations require that air data and heading information
be available electronically from the aircraft. This limits FMS
usage in smaller aircraft, but emerging technologies allow this
data from increasingly smaller and less costly systems.

Some systems interface with a dedicated Distance Measuring
Equipment (DME) receiver channel under the control of the
FMS to provide an additional sensor. in these systems, the
FMS determines which DME sites should be interrogated
for distance information using aircraft: position and the
navigation database to locate appropriate DME sites. The
FMS then compensates aircraft altitude and station altitude
with the aid of the database to determine the precise distance
to the station. With the distances from a number of sites the
FMS can compute a position nearly as accurately as GPS.

Aimer visualized three-dimensional aircraft control with
an FMS. Modern systems provide Vertical Navigation
(VNAV) as well as Lateral Navigation (LNAV) allowing
the pilot 1.0 create a vertical flight profile synchronous with
the lateral flight plan. Unlike early systems, such as Inertial
Reference Systems (IRS) that were only suitable for en route
navigation, the modem FMS can guide an aircraft during
instrument approaches.

Today, an FMS provides not only real-time navigation
capability but typically interfaces with other aircraft systems
providing fuel management, control of cabin briefing and
display systems, display of up linked text and graphic weather
data and air/ground data link communications.

Electronic Flight Instrument Systems
Modern technology has introduced into aviation a new
method of displaying flight instruments, such as electronic
flight instrument systems, integrated flight deck displays, and
others. For the purpose of the practical test standards, any
flight instrument display that utilizes LCD or picture tube like
displays is referred to as "electronic flight instrument display"
and/or a glass flight deck. In general aviation there is typically
a primary flight display (PFD) and a multi-function display
(MFD). Although both displays are in many cases identical,
the PFD provides the pilot instrumentation necessary for
flight to include altitude, airspeed, vertical velocity, attitude,
heading and trim and trend information.

Glass flight decks (a term coined to describe electronic flight
instrument systems) are becoming more widespread as cost
falls and dependability continually increases. These systems
provide many advantages such as being lighter, more reliable,
no moving parts to wear out, consuming less power, and
replacing numerous mechanical indicators with a single glass
display. Because the versatility offered by glass displays is
much greater than that offered by analog displays, the use
of such systems will only increase with time until analog
systems are eclipsed.

Primary Right Display (PFD)

PFDs provide increased situational awareness to the pilot by
replacing the traditional six instruments used for instrument
flight with an easy-to-scan display that provides the horizon,
airspeed, altitude, vertical speed, trend, trim, rate of turn
among other key relevant indications. Examples of PFDs
are illustrated in Figure 3-45.

Synthetic Vision
Synthetic vision provides a realistic depiction of the aircraft
in relation to terrain and flight path. Systems such as those
produced by Chelton Flight Systems, Universal Flight
Systems, and others provide for depictions of terrain and
course. Figure 3-46 is an example of the Chelton Flight
System providing both 3-dimensional situational awareness
and a synthetic highway in the sky, representing the desired
flight path. Synthetic vision is used as a PFD, but provides
guidance in a more normal, outside reference format.