| Home | Privacy | Contact |

Airplane Flying Handbook

| First | Previous | Next | Last |

Airplane Flying Handbook


Table of Contents

Chapter 1,Introduction to Flight Training
Chapter 2,Ground Operations
Chapter 3,Basic Flight Maneuvers
Chapter 4, Slow Flight, Stalls, and Spins
Chapter 5, Takeoff and Departure Climbs
Chapter 6, Ground Reference Maneuvers
Chapter 7, Airport Traffic Patterns
Chapter 8, Approaches and Landings
Chapter 9, Performance Maneuvers
Chapter 10, Night Operations
Chapter 11,Transition to Complex Airplanes
Chapter 12, Transition to Multiengine Airplanes
Chapter 13,Transition to Tailwheel Airplanes
Chapter 14, Transition to Turbo-propeller Powered Airplanes
Chapter 15,Transition to Jet Powered Airplanes
Chapter 16,Emergency Procedures




BALLOON—The result of a too
aggressive flare during landing
causing the aircraft to climb.

(GAMA)—Basic empty weight
includes the standard empty weight
plus optional and special equipment
that has been installed.

The speed at which the aircraft will
produce the most gain in altitude in a
given distance.

BEST GLIDE—The airspeed in
which the aircraft glides the furthest
for the least altitude lost when in
non-powered flight.

The speed at which the aircraft will
produce the most gain in altitude in
the least amount of time.

BLADE FACE—The flat portion of a
propeller blade, resembling the
bottom portion of an airfoil.

BLEED AIR—Compressed air
tapped from the compressor stages of
a turbine engine by use of ducts and
tubing. Bleed air can be used for
deice, anti-ice, cabin pressurization,
heating, and cooling systems.

BLEED VALVE—In a turbine
engine, a flapper valve, a popoff
valve, or a bleed band designed to
bleed off a portion of the compressor
air to the atmosphere. Used to
maintain blade angle of attack and
provide stall-free engine acceleration
and deceleration.

BOOST PUMP—An electrically
driven fuel pump, usually of the
centrifugal type, located in one of the
fuel tanks. It is used to provide fuel to
the engine for starting and providing
fuel pressure in the event of failure of
the engine driven pump. It also
pressurizes the fuel lines to prevent
vapor lock.

BUFFETING—The beating of an
aerodynamic structure or surface by
unsteady flow, gusts, etc.; the irregular
shaking or oscillation of a vehicle
component owing to turbulent air or
separated flow.

BUS BAR—An electrical power
distribution point to which several
circuits may be connected. It is often a
solid metal strip having a number of
terminals installed on it.

BUS TIE—A switch that connects
two or more bus bars. It is usually
used when one generator fails and
power is lost to its bus. By closing the
switch, the operating generator
powers both busses.

BYPASS AIR—The part of a
turbofan's induction air that bypasses
the engine core.

BYPASS RATIO—The ratio of the
mass airflow in pounds per second
through the fan section of a turbofan
engine to the mass airflow that passes
through the gas generator portion of
the engine. Or, the ratio between fan
mass airflow (lb/sec.) and core engine
mass airflow (lb/sec.).

condition where pressurized air is
forced into the cabin simulating
pressure conditions at a much lower
altitude and increasing the aircraft
occupants comfort.

(CAS)—Indicated airspeed corrected
for installation error and instrument
error. Although manufacturers attempt
to keep airspeed errors to a minimum,
it is not possible to eliminate all errors
throughout the airspeed operating
range. At certain airspeeds and with
certain flap settings, the installation
and instrument errors may total
several knots. This error is generally
greatest at low airspeeds. In the
cruising and higher airspeed ranges,
indicated airspeed and calibrated
airspeed are approximately the same.
Refer to the airspeed calibration chart
to correct for possible airspeed errors.

CAMBERED—The camber of an
airfoil is the characteristic curve of its
upper and lower surfaces. The upper
camber is more pronounced, while the
lower camber is comparatively flat.
This causes the velocity of the airflow
immediately above the wing to be
much higher than that below the wing.

forms inside the carburetor due to the
temperature drop caused by the
vaporization of the fuel. Induction
system icing is an operational hazard
because it can cut off the flow of the
fuel/air charge or vary the fuel/air

CARBURETOR—1. Pressure: A
hydromechanical device employing a
closed feed system from the fuel
pump to the discharge nozzle. It
meters fuel through fixed jets
according to the mass airflow through
the throttle body and discharges it
under a positive pressure. Pressure
carburetors are distinctly different
from float-type carburetors, as they do
not incorporate a vented float
chamber or suction pickup from a
discharge nozzle located in the venturi
tube. 2. Float-type: Consists
essentially of a main air passage
through which the engine draws its
supply of air, a mechanism to control
the quantity of fuel discharged in
relation to the flow of air, and a means
of regulating the quantity of fuel/air
mixture delivered to the engine

reverser normally found on turbofan
engines in which a blocker door and a
series of cascade vanes are used to
redirect exhaust gases in a forward

The point at which an airplane would
balance if it were possible to suspend
it at that point. It is the mass center of
the airplane, or the theoretical point at
which the entire weight of the airplane
is assumed to be concentrated. It may
be expressed in inches from the reference
datum, or in percent of mean
aerodynamic chord (MAC). The location
depends on the distribution of
weight in the airplane.